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Abstract— This paper investigates resource allocation algo-
rithms that use limited communication – where the supplier
of a resource broadcasts a coordinating signal using one bit of
information to users per iteration. Rather than relay anticipated
consumption to the supplier, the users locally compute their
allocation, while the supplier measures the total resource
consumption. Since the users do not compare their local
consumption against the supplier’s capacity at each iteration,
they can easily overload the system and cause an outage (for
example blackout in power networks). To address this challenge,
this paper investigates pragmatic coding schemes, called PF-
codes (Primal-Feasible codes), that not only allow the restriction
of communication to a single bit of information, but also avoid
system overload due to users’ heavy consumption. We derive
a worst case lower bound on the number of bits needed to
achieve any desired accuracy using PF-codes. In addition, we
demonstrate how to construct time-invariant and time-varying
PF-codes. We provide an upper bound on the number of
bits needed to achieve any desired solution accuracy using
time-invariant PF-codes. Remarkably, the difference between
the upper and lower bound is only 2 bits. It is proved
that the time-varying PF-codes asymptotically converge to the
true primal/dual optimal solution. Simulations demonstrating
accuracy of our theoretical analyses are presented.

I. INTRODUCTION

A fundamental task in most networked systems is to
allocate shared resources between the network entities, e.g.,
allocate power in electrical distribution and data rates in
communication networks. Most real-world networks are now
growing at unprecedented rates, in part, due to advances
in smart sensor/actuator technologies. It is, thus, becoming
more important that the protocols used to allocate the re-
sources appropriately scale with the growing network size. In
particular, the communication architecture used to coordinate
these algorithms must be managed efficiently to reduce
excessive bandwidth consumption [1]. Motivated by these
challenges, we investigate algorithms for resource allocation
amongst spatially distributed network entities that operate
using limited communication overhead.

Resource allocation optimization problems and related de-
composition optimization algorithms have had much success
in efficient operation of communication networks [2]–[5].
More recent work has also demonstrated the potential of
using similar ideas to coordinate and economically operate
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smart power grids [6]–[9]. However, distributed optimization
algorithms that use limited communication have not received
much attention, despite their significant benefits, especially
given bandwidth constraints on most communication net-
works. Some interesting work [10]–[13] on distributed
optimization using limited bandwidth can be found in the
literature. The problems addressed in [10]–[13] consider
bandwidth-limited coordination of primal problem iterates,
in the setting of consensus/incremental subgradient methods
and cellular power control, where no dual variables are in-
troduced. However, many interesting problems have coupled
constraints and are therefore more naturally decomposed
using duality theory [2]–[9]. This motivates us to consider
dual decomposition where the dual gradients are commu-
nicated using limited bandwidth. This gives new analytical
challenges compared to the earlier work.

A. Contributions of This Work

This paper investigates resource allocation algorithms
based on dual decomposition using one-way communication
from supplier to users. By one-way communication, we mean
that the supplier iteratively broadcasts a coordination signal
(dual variable) to the users, which the users use to locally
compute their optimal allocations, without having relayed
their anticipated demands to the suppliers. Instead, the users
consume an amount of the resources that depends on the
coordination signal. Then the supplier measures the total
consumption before updating the coordination signal. Such
physical measurements are easily achievable in many real-
world networks, e.g., in power networks [14].

Unlike our previous work [9], where a real valued co-
ordination signal (thus requiring infinite bits) is iteratively
broadcast, in this paper only one bit is broadcast per iteration.
The generalization to more than one bit per iteration is given
in [9]. The main contribution of this paper is to investigate
and design practical codes, or quantizers that allow only one
bit of information per iteration to be broadcast, while guar-
anteeing feasibility of the primal iterates at every iteration.
If primal feasibility is not ensured, users may consume more
resources than are available and overload the system. This
is clearly unacceptable because it causes blackouts in power
networks, or outages in wireless networks. We investigate
the main properties of such primal feasible (PF) codes. We
provide a lower bound on the performance of PF-codes, i.e.,
a worst case lower bound on the bits needed to achieve any ε-
solution accuracy. We demonstrate how to construct a) time-
invariant and b) time-varying PF-codes. For time invariant
PF-codes, we provide an upper bound on the number bits



needed to achieve any ε-solution accuracy. The difference
between the upper and lower bound is 2 bits. We show that
the time varying PF-codes do asymptotically converge to the
true primal/dual solution. Unlike our earlier work [8], [9]
the current paper studies bandwidth limited communication.
Compared to [15], which considered how to quantize only
the direction of a high dimensional gradient, this paper
investigates how to quantize the magnitude of a scalar dual
derivative while simultaneously ensuring primal feasibility
of the iterates.

B. Notation and Definitions

The set of real, positive real, and natural numbers are
denoted by R, R+, and N. |A| is the cardinality of the
set A. The projections of z∈R to R+ and [m,M ] are
denoted by dze+ and [z]Mm . ||·|| is the 2-norm. We say
that f :Rn→R is, respectively, L-smooth and µ-concave
on X⊆Rn if ∇f is L-Lipschitz continuous on X and if
f(y)≤f(x)+〈∇f(x),y−x〉−µ2 ||y−x||

2 for all x,y∈X .

II. PROBLEM FORMULATION AND RELATED
BACKGROUND

In this section we introduce the problem background.
Subsection II-A presents the resource allocation problem
studied in the paper and how they can be solved using
dual decomposition. Subsection II-B demonstrates how the
bandwidth limited one-way communication is used, via dual
decomposition, to solve the resource allocation problem.

A. Resource Allocation and Dual Decomposition

Consider a network with N users N = {1, · · · , N} and
a single supplier of some resource, e.g., electricity. The
resource allocated to user i ∈ N is denoted by xi ∈ R+ and
the total supply capacity is C ∈ R+. The Resource Allocation
problem that models the resource distribution is given by [2]

maximize
x1,··· ,xN

N∑
i=1

Ui(xi),

subject to
N∑
i=1

xi ≤ C,

xi ∈ [mi,Mi],

(1)

where Ui : R → R is a utility function and mi and Mi are
the lower and upper bounds on the demand of user i ∈ N .
We make the following standard assumptions on (1):

Assumption 1. (Convex) Ui(xi) is µ-concave on [mi,Mi].

Assumption 2. (Well Posed) We have that
∑N
i=1mi ≤ C ≤∑N

i=1Mi In other words, Problem (1) is feasible and the
constraint

∑N
i=1 xi ≤ C is not redundant.

This paper considers distributed algorithms for solving (1)
based on duality theory [2], [3]. In particular, the solution
of (1) is obtained by solving the dual problem:

minimize
p

D(p),

subject to p ≥ 0,
(2)

where D and p are the dual function and dual variables [16,
Chapter 5], respectively. D is given by

D(p) = maximize
x∈

∏N
i=1[mi,Mi]

N∑
i=1

Ui(xi)−p

(
N∑
i=1

xi−C

)

=

N∑
i=1

Ui(xi(p))−p

(
N∑
i=1

xi(p)−C

)
(3)

where x = (x1, . . . , xN )T and

xi(p)= argmax
xi∈[mi,Mi]

Ui(xi)− p xi=
[
(U ′i)

−1(p)
]Mi

mi
. (4)

The dual derivative is
D′(p) = C −

N∑
i=1

xi(p). (5)

The following result establishes a relationship between (1)
and (2) [9, Lemma 1]:

Lemma 1. (Strong Duality) Suppose Assumptions 1 and 2
hold. If p? is an optimal solution of (2), then x(p?) =
[xi(p

?)]i∈N [cf. (4)] is the optimal solution to (1).

The following result is proved in the Appendix:

Proposition 1. Suppose Assumption 1 and 2 hold, then
i) D(·) is differentiable and N/µ-smooth and ii) (2) has
an optimal solution in the interval [0, P ] where P =
maxi∈N U

′
i(mi).

Motivated by Proposition 1, the theory developed in this
paper considers dual problems that come from the following
class of convex optimization problems:

Definition 1. Let DP,L denote the set of all (dual) optimiza-
tion problems of the form

minimize
p

D(p),

subject to p ∈ [0, P ],
(6)

where D : R+ → R is convex and L-smooth and at least
one optimal solution p? to (6) is also an optimal solution to
the relaxed problem, i.e., if p? = P then D′(p?) = 0.

Due to Proposition 1, all dual problems of Problem (1),
where Assumptions 1 and 2 hold are in the class DP,L with
L = N/µ and P = maxi∈N U

′
i(mi). To ensure that the

suppliers know to which class DP,L their dual problems
belongs, we make the following mild assumption.

Assumption 3. There exists a P with P ≥ U ′i(mi) ∀ i ∈ N .

The primal problem (1) can be solved in a distributed way
via dual decomposition. Then, instead of directly solving the
coupled primal problem, the dual problem is solved using the
gradient descent method. Specifically, the supplier updates
the dual variable p(t) using the gradient descent iterate

p(t+1) = dp(t)− γD′(p(t))e+ , (7)

where γ > 0 is the step-size and the dual derivative D′(p(t))
[cf. (5)] can be computed in a distributed fashion from (4).



User i for i = 1, · · · , N

(D) Receive: ∆(t)

(E) Update p: p(t+1)=p(t)−∆(t)

(F ) Update q: qi(t+1)=[U ′i(p(t))]
M
m

Communication Channel

(C) ∆(t)∈{0, 1}

Supplier

(A) Quantize: ∆(t)=θt(D
′(p(t)))

(B) Broadcast: ∆(t)

(H) Measure: D′(p(t+1))

Feedback Channel (Measurement)

(G) D′(p(t+1)) = C −
∑
i∈N

qi(t+1)

Fig. 1: The OneWay-DD Algorithm.

The following result on the convergence of the recursion (7)
is standard in the literature [2, Theorem 1].

Proposition 2. If γ ∈ (0, 2µ/N) in the recursions given in
Equation (7), then every limit point of p(t) is a solution to (2)
and limt→∞ x(t) = x? where x? is the solution to (1).

The dual gradient (5) is simply the difference between
supply and demand, which can be measured by the supplier,
e.g., in power networks [14]. Based on this observation, we
suggest a one-way communication model for solving (1) that
is well suited for real-world power networks.

B. Communication Model: One-Way Communication

We consider bandwidth limited one-way communication
protocols for solving (1) that use:
• One-Way Communication: The suppliers communi-

cate with users via a noiseless, binary channel with
bandwidth of 1 bit per iteration.

• Feedback Information: After broadcasting the dual
variable p(t) to the users, the supplier can measure
deviation between total power consumption and supply,
i.e., the dual gradient D′(p(t)) = C −

∑N
i=1 xi(t).

For the one-way communication, a channel is needed
between the supplier and users. We consider minimal band-
width where 1 bit is communicated per iteration. There-
fore, the results are useful for “horrible” communication
channels [17] with very limited bandwidth, e.g., power line
communication. The feedback information obtained from
measuring D′(p(t)), that is, the difference between supply
and demand can be obtained in many realistic engineering
scenarios, e.g., in power networks [14].

Figure 1 depicts the one-way communication model and
steps of the dual decomposition algorithm studied in the
rest of the paper. At each iteration t of the algorithm, the
supplier broadcasts one binary signal indicating the change
of the dual variable, i.e., quantized dual gradient information
θt(D

′(p(t))), where θt : R → Rt, and Rt ⊆ R with
cardinality |Rt| = 2. Then each user i ∈ N can update its
local copy of the dual variable pi(t+1) as in Equation (7).1

In particular, the dual variable is updated as

p(t+1) = dp(t)− θt(D′(p(t)))e+. (8)

1In the rest of the paper we use the notation p(t) instead of pi(t) since
pi(t) = pj(t) for all i ∈ N and t ∈ N.

The users update their usage based on the dual variable
p(t+1) following Equation (4). Then the supplier can mea-
sure the total consumption, i.e., the dual gradient (5). The
steps of the algorithm (A)-(G) can be described as follows:

ONEWAY-DD: One way communication dual decomposition

(A) The supplier quantizes D′(p(t)): ∆(t)=θt(D
′(p(t))).

(B) The supplier broadcasts ∆(t) to all users.
(C) ∆(t) is carried over the binary channel.
(D) Each user receives the message ∆(t).
(E) The users locally update the dual variable p(t) using (8).
(F) The users update their power demands using (4).
(G) The dual gradient D′(p(t)) [cf. (5)] is available.
(H) The supplier measures D′(p(t)) [cf. (5)].

We consider different codes for the ONEWAY-DD Algo-
rithm, where codes are formally defined as follows:

Definition 2. We call a pair (p(0), θt(·)) a code for the
ONEWAY-DD Algorithm if p(0) ∈ [0, P ] and θt : R → Rt,
with |Rt| = 2.

Due to the one-way communication, the primal iterates
xi(t) are not communicated to the supplier. Instead the users
locally compute their allocations xi(t) and their aggregate
allocation is measured by the supplier. Therefore, it is
essential that the primal problem (1) is feasible during every
iteration of the algorithm, i.e.

∑N
i=1 xi(t) ≤ C for all t ∈ N.

Otherwise, a heightened demand of power in the network can
result in a system overload, e.g., blackouts in power systems.

In what follows, we study the convergence of the
ONEWAY-DD Algorithm and how to ensure that the primal
problem is feasible during every iteration.

III. HOW TO AVOID BLACKOUTS?
PRIMAL FEASIBLE CODES

In this section, we investigate how to ensure transient
primal feasibility of the ONEWAY-DD Algorithm. In Sub-
section III-A, we introduce codes for the ONEWAY-DD
Algorithm that ensure primal feasibility at every iteration and
for all considered resource allocation problems – so called
Primal Feasible (PF) codes. In Subsection III-B, we provide
worst case lower bounds on the performance of the PF-codes
in terms of number of bits needed to achieve given accuracy.

The following result, proved in the Appendix, is used
throughout the rest of the paper.

Lemma 2. Consider the primal and dual problems (1)
and (2). Let P? = [p?, p̄?] be the set of dual optimizers. Then
the following three condition are equivalent: (i) (xi(p))i∈N
is primal feasible, (ii) D′(p) ≥ 0, and (iii) p ≥ p?.

A. Primal Feasible (PF) Codes

We are interested in codes that ensure primal feasibility
of Problem (1), where Assumptions 1, 2, and 3 hold. We
formally define such codes as follows.

Definition 3 (Primal Feasible (PF) Codes). We say that a
code (p(0), θt(·)) is Primal Feasible (PF) if for every re-
source allocation problem (1) where Assumptions 1, 2, and 3



hold, the iterates [xi(p(t))]i∈N are feasible for Problem (1),
for t = 1, 2 · · · , and p(t+1) = p(t) − θt(p(t)). We denote
the set of all PF-codes by CPF.

PF-codes are practically desirable since they ensure that
the users i ∈ N do not overuse the resources as the algorithm
runs. However, we wish to arrive at a design method for such
codes. The following result demonstrates a key property used
later to design PF-codes for the ONEWAY-DD Algorithm.

Theorem 1. (p(0), θt(·)) is a PF-code if p(0) = P and
θt(z) ≤ (1/L)z for all z ≥ 0.

Proof. We first show that [xi(P )]i∈N is feasible to all
resource allocation problems (1) where Assumptions 1 and 2
hold. By Assumptions 2 and 3, for any dual function D(·) ∈
DP,L there is p? ∈ [0, P ] with D′(p?) = 0. In particular,
P ≥ p? and hence by Lemma 2-iii) [xi(P )]i∈N is feasible.

We next show that if [xi(p(t))]i∈N is feasible for Problem
(1) and θt(z) ≤ (1/L)z, z ≥ 0, then [xi(p(t+1))]i∈N is also
feasible for Problem (1), where p(t+1) = p(t)−θt(D′(p(t)).
From Lemma 2-ii) we have for all D∈DP,L that [xi(p)]i∈N
is feasible for p∈[0, P ] if and only if D′(p)≥0. Hence,
D′(p(t))≥0 and by the L-Lipschitz continuity of D′ we have
that D′(p(t))−D′(p(t+1)) ≤ Lθt(D

′(p(t)))≤D′(p(t)), or
by rearranging 0≤D′(p(t+1)). Therefore, [xi(p(t+1))]i∈N
is feasible for Problem (1) by Lemma 2-ii).

The following example demonstrates that the conditions
that p(0) = P and θt(z) ≤ (1/L)z, for z ≥ 0, are generally
also necessary for (p(0), θt) to be a PF-code.

Example 1. Consider Problem (1), where the utility func-
tion of user i∈N is Ui(xi)=− N

2L (xi−M)2, where mi=m,
Mi = M , and M−m=PL/N . Direct inspection shows that
U ′(m) ≤ P , Assumption 3 holds, and xi(p) = [U ′i ]

−1(p) =
M − (L/N)p [cf. (4)] for p ∈ [0, P ] and xi(p) = mi for
p > P . The dual function is D(p) = L

2 p
2 + (C −MN)p,

for p ∈ [0, P ]. D′(p) = Lp + (C − MN) is L-Lipschitz
continuous and D′(p) = 0 when p? = (MN − C)/L.
Therefore, given C ∈ [Nm,NM ] the optimal primal/dual
solutions are x?i (C) = C/N and p?(C) = (MN − C)/L.

From Example 1, we see that p(0) = P is necessary
for (p(0), θt) to be a PF-code. Since for any p ∈ [0, P ),
[xi(p)]i∈N is infeasible to the the primal problem given
in Example 1 with C = MN−L(p+P )/2. This fact is
established by Lemma 2 iii) and p? = (p+P )/2 is then
the unique optimal solution to the dual problem. Similarly,
if p(t)−p(t+1) = θt(D

′(p(t)) > (1/L)D′(p(t)), then it
possible to obtain iterates such that [xi(p(t))]i∈N is feasible
for Problem (1) but [xi(p(t+1))]i∈N is not.

We next provide a lower bound on the number of bits
needed to achieve ε-accuracy using the primal feasible
ONEWAY-DD Algorithm.

B. Lower Bounds on Primal Feasible-Codes

The following result provides a lower bound on the
number of bits needed to ensure that the dual problem is
solved up to any given ε-accuracy.

Theorem 2 (Lower Bound). Consider the ONEWAY-DD
Algorithm and let ε > 0 be given. Then for every PF-code
(p(0), θt) there exists D ∈ DP,L such that at least

BPF(ε) :=

⌈
PL

ε

⌉
− 2 bits (9)

are needed to find p ∈ [0, P ] for which |D′(p(T ))| ≤ ε. In
other words, for any PF-code (p(0), θt), BPF(ε) is a lower
bound on the following minimax problem:

min
T∈N

max
D∈DP,L

T

subject to |D′(p(T ))| ≤ ε,
(p(0), θt) ∈ CPF.

(10)

Proof. We can assume without loss of generality that
p(t+1) ≤ p(t) for all t ∈ N, i.e., we only consider PF-codes
with θt(z) ≥ 0 for z ≥ 0. Otherwise, if p(t+1) > p(t) for
the PF-code (p(0), θt(·)) and some t, then we can choose
another PF-code (p(0), θ̂t(·)) that reaches p(t+1) in fewer
iterations. Moreover, p(0) = P is a necessary condition for
(p(0), θt(·)) to be a PF-code, as outlined in the discussion
following Example 1; PF-codes have the form (P, θt(·)).

To prove the result, we consider a primal problem with a
dual problem D(·) ∈ DP,L that is difficult for all PF-codes.
For any δ > 0, consider Example 2 (defined below) with
α = (ε+δ)/L and C = MN . Then the dual function and
dual derivative can be obtained by inserting α = (ε+δ)/L
and C = MN into Equations (11) and (12).

We start by showing that for all PF-codes (P, θt(·)) and
D(·) it holds that θt(D′(p(t))) ≤ (ε + δ)/L for all t ∈ N.
In particular, we show that if θt0(ε + δ) > (ε + δ)/L for
some t0 ∈ N then (P, θt(·)) is not a PF-code by constructing
a primal problem with dual problem D̂(·) ∈ DP,L such
that [xi(p(t0))]i∈N is feasible and [xi(p(t0+1))]i∈N is in-
feasible, where p(t0+1) = p(t0) − θt(D̂(p(t0)). Consider
Example 2 (defined below) with α = p(t0) and C =
MN + ε+δ−Lp(t0). Then D̂′(p) = ε+δ for all p ≥ p(t0),
p(t) ∈ [p(t0), P ] for t ≤ t0 (since p(t+1) ≤ p(t)), and
D̂′(p?) = 0 if and only if p? = p(t)−(ε+δ)/L. As a result,
p(t0+1) = p(t0) − θt(D̂(p(t0)) < p(t) − (ε + δ)/L = p?.
Hence, [xi(p(t0+1))]i∈N is infeasible by Lemma 2-iii).

From above, the iterations p(t)=p(t−1)−θt(D′(p(t−1)))
can be lower bounded by p(t) ≥ P − t(ε + δ)/L for t ≤
bLP/(ε+ δ)c−1. In particular, D′(p(t)) = ε+δ > ε for all
t ≤ bLP/(ε+δ)c−1. Then the result follows by noting that
for δ > 0 sufficiently small, bLP/(ε+δ)c ≤ dLP/εe−1.

The following example is used in the proof of Theorem 2
to provide a problem that is difficult for all PF-codes.

Example 2. Let α > 0 and C be given and consider
Problem (1), where the utility of user i ∈ N is Ui(xi) =
− N

2L (xi−M)2, mi = m, Mi = M , and m = M−(L/N)α.
It can be checked that U ′(m) ≤ P , Assumption 3 holds, and
xi(p)=M−(L/N)p if p∈[0, α] and xi(p)=m if p∈[α, P ].
The dual function and dual derivative are

D(p) =

{
Lp2/2 + (C −NM)p if p∈[0, α]

Lα(p− α/2)+(C−NM)p if p∈[α, P ],
(11)



D′(p) =

{
L p+ (C −NM) if p∈[0, α]

Lα+ (C −NM) if p∈[α, P ].
(12)

Theorem 2 shows that for any ε > 0 and PF-code (P, θt(·))
there exists a primal problem and an associated dual problem
D(·) ∈ DP,L such that at least BPF (ε) bits are needed to
satisfy D′(p(t)) ≤ ε. In the next section, we demonstrate
how to construct practical PF-codes, including codes that
almost achieve that lower bound BPF (ε) in Equation (9).

IV. PRACTICAL PRIMAL FEASIBLE (PF) CODES

This section provides two practical PF-codes. In Subsec-
tions IV-A and IV-B we respectively introduce time-invariant
and time-varying PF-codes, and study their properties.

A. Coding scheme 1: Time-Invariant PF-Codes

We now introduce a class of PF-codes that almost reach
the lower bound in Theorem 2. The difference between the
upper and lower bound is two bits.

Definition 4 (Binary Time-Invariant Codes). (P, θt) is a
binary time-invariant code if θt=θ : R→R, t∈N and |R|=2.

We consider binary time-invariant codes (P, θκγ ) generated
by the following class of quantizers

θκγ (z) =

{
γ if z ≥ κ
0 otherwise,

(13)

γ, κ > 0. The quantizer (13) ensures that at every iteration of
the ONEWAY-DD Algorithm the dual variable sequence p(t)
is non-increasing. The following result demonstrates how to
choose γ and κ such that i) (P, θκγ (·)) is a PF-code and ii)
D′(·) can be made arbitrarily small.

Theorem 3. Consider the quantizer θκγ (·) [cf. (13)], then:
i) (P, θκγ (·)) is a PF-code if γ > 0 and κ ≥ γL.
ii) For any ε > 0, if γ = ε/L and κ = ε then (P, θκγ (·)) is a

PF-code and |D′(p(t))| ≤ ε for all t≥T where T≤dPL/εe.

Proof. i) If γ > 0 and κ ≥ γL then θκγ (z) ≤ (1/L)z for all
z ≥ 0. Therefore, the result follows directly from Theorem 1.

ii) The fact that (P, θκγ (·)) is a PF-code follows from i);
hence, D′(p(t)) ≥ 0, for t ∈ N [see Lemma 2-ii)]. Moreover,
we have D′(p(t+1)) ≤ D′(p(t)), for all t ∈ N, since p(t)
is decreasing, due to γ > 0, and D′(·) is monotone, due to
the convexity of D(·). Therefore, p(t) = dP − tγe+ for t =
1, · · · , T and p(t) = p(T ) for t > T , where T = min{t ∈
N
∣∣ε ≤ |D′(P − tγ)|}. It holds that 0 ≤ D′(p(T )) ≤ κ = ε

since D′(p?) = 0 for some p? ∈ [0, P ], Assumption 2, and
D′(p(t)) ≥ 0 for all t ∈ N, (P, θκγ (·)) is a PF-code. Hence,
T ≤ dP/γe = dPL/εe as dP−tγe+ = 0 for t > P/γ.

The PF-code (P, θκγ (·)) possesses the practical advantage
that for all considered primal/dual problems, at most dPL/εe
bits/iterations are needed to reach any ε-accuracy, even on
the most extreme problems; that is, only 2 bits more than the
lower bound provided in Theorem 2. However, the bound
obtained in Theorem 2 is a lower bound on the number
of bits needed to solve the most difficult problem in the
class DP,L. In particular, it was obtained by considering the

extreme Example 2, where for given ε > 0, the dual gradient
was D′(p) = ε + δ for p ∈ [α, P ], with δ, α > 0 small.
Practical problems are likely to be less stringent and the dual
derivative D′(·) is generally not a constant ε+ δ on [α, P ],
for the chosen ε > 0. Most problems are likely to have a
dual gradient that changes more over [0, P ]. Therefore, it is
desirable to consider time-varying PF-codes.

B. Coding scheme 2: Time-Varying PF-Codes

We now consider time varying PF-codes, which can have
faster convergence for many moderate resource allocation
problems, though they may not perform as well on extreme
worst-case problems. For example, in the initial steps when
the dual derivate D′(·) is likely to be large, then large
steps can be taken in the dual descent step to accelerate
the convergence. Then, en route to convergence the dual
gradient decreases and it is natural to take more conservative
steps. Another advantage of time varying codes is that they
can asymptotically converge to the true primal/dual optimal
solution. We consider time varying quantizers of the form

θt(z) =

{
γ(t) if z ≥ κ(t)

0 otherwise.
(14)

We now show that (P, θt(·)) with θt(·) in (14) is a PF-code
and prove the asymptotic convergence of such codes.

Theorem 4. Consider the quantizer θt in (14) with
γ(t), κ(t) > 0 for t ∈ N. Then

i) (P, θt(·)) is a PF-code if κ(t) ≤ γ(t)L for t ∈ N.
ii) If κ(t) = γ(t)L, limt→∞ γ(t) = 0, and

∑∞
t=1 γ(t) =

∞ then limt→∞ p(t) = p̄? and limt→∞ xi(t) = x?i , where
[p?, p̄?] is the set of optimal solutions to the dual problem and
[x?i ]i=1,··· ,N is the optimal solution to the primal problem.

Proof. i) As in the proof of Theorem 3-i), θt(z)≤(1/L)z for
all z≥0, so the result follows from Theorem 1.

ii) Since γ(t) > 0, the sequence p(t) is decreasing, i.e.,
p(t+1) ≤ p(t) for all t ∈ N. Since θt(z) ≤ (1/L)z holds
for all z ≥ 0, p(t) is bounded below by p̄?, i.e., p̄? ≤ p(t)
for t ∈ N. Therefore, the limit p̂:= limt→∞ p(t) exists and
p̄?≤p̂. If p̄?=p̂ then limt→∞ xi(p(t)) = x?i , yielding the
result. To conclude the proof, we now show that p̄?=p̂.

We prove p̄?=p̂ by contradiction: Suppose p̄?<p̂, then
D′(p̂)>0 and limt→∞ κ(t)=0. Hence, T∈N can be chosen
so that D′(p̂)≥κ(t) for t≥T . Therefore, D′(p(t))≥κ(t)
for t≥T , D′(·) is monotone since D(·) is convex. As
a result for t≥T we have that θt(D

′(p(t)))=γ(t) and

p(t+1)=
⌈
p(T )−

∑t
k=T γ(t)

⌉+
. Since

∑t
k=T γ(t)=∞, we

have p̂= limt→∞ p(t)=0, which contradicts p̂>p̄?≥0.

We next illustrate the results in simulations.

V. NUMERICAL SIMULATIONS

Consider a power supplier in a micro grid with the task
of supplying N = 40 users (or devices) with C = 200
units of power. Each user i ∈ N has the power demand
di and the supplier’s task is to fairly allocate the limited
power among the users by solving Problem (1) with the



(a) Dual derivative. (b) Primal/Dual objective values

(c) Primal variables. (d) Dual variables.

Fig. 2: Convergence of the ONEWAY-DD Algorithm for the
time-invariant PF-code (13) with γ = ε/L and κ = ε [as in
Theorem 3-ii)] where ε = 0.1, 0.5, 1, 5.

utility functions given by Ui(xi) = −0.5(xi−di)2. The
power demand di of each user i ∈ N is taken uniformly
at random from the interval [5, 15]. The local constraint of
each user i ∈ N is [mi,Mi] = [0, 15]. Direct inspection
shows that Assumptions 2 holds and that Ui is 1-concave
and U ′i(0) ≤ P := 15, i.e., Assumptions 1 and 3 hold.
Therefore, the dual function of the problem is L-smooth
with L=N , by Proposition 1. We apply the ONEWAY-DD
Algorithm on the problem and use the time-invariant PF-
code (13) with γ=ε/L and κ=ε [as in Theorem 3-ii)] to
achieve ε>0 solution accuracy with ε=0.1, 0.5, 1, 5.

Figure 2a depicts the dual derivative D′(p(t)) at every
iteration. The results show that the ε = 0.1, 0.5, 1, 5 accuracy
is reached using 3899, 780, 390, and 78 bits compared
with the theoretical upper bound 6000, 1200, 600, and 120
from Theorem 3-ii). Figure 2b depicts the primal and dual
objective function values at every iteration. The duality gap
after the ε-accuracy is reached, i.e., D(p(t))−

∑
i∈N Ui(xi)

with t ≥ T [Theorem 3-ii)], is 0.47, 1.97, 4.48, and 24.99,
for ε = 0.1, 0.5, 1, and 5, respectively. Since a PF-code
is used, [xi(p(t))]i∈N are always primal feasible; hence the
duality gap shows how far the feasible (suboptimal) points
[xi(p(t))]i∈N are from true optimal value. Figures 2c and 2d
show how the primal/dual iterates converge to the optimal
primal/dual point, with good accuracy in all cases.

APPENDIX

Proof of Proposition 1. i) See Lemma II.2 in [5].
ii) Clearly, (2) has an optimal solution p? ∈ R+ due to

Lemma 1. We prove the result by showing that if there is
an optimal solution p? such that p? ≥ P , then P is also
an optimal solution to (2). Since P = maxi∈N U

′
i(mi),

we have U ′i(mi) ≤ P for all i ∈ N . Moreover, mi ≥
(U ′i)

−1(P ) for all i ∈ N since (U ′i)
−1(·) is a decreasing

function, due to the concavity of Ui and the fact that the
inverse of decreasing function is decreasing. In particular,
xi(P ) = [(U ′i)

−1(P )]Mi
mi

= mi and hence xi(p) = mi for
p ≥ P . As a result, if (2) has an optimal solution p? with
p? ≥ P then P is also an optimal solution to (2).

Proof of Lemma 2. (i)⇐⇒ (ii): D′(p) = C −
∑N
i=1 xi(p)

from Equation (5). Therefore, if D′(p) < 0 then C <∑N
i=1 xi(p) and if 0 ≤ D′(p) then

∑N
i=1 xi(p) ≤ C.

(ii)⇐⇒ (iii): For p?∈P?, we have D′(p?)=0. Since D

is a convex function, D′(p)=C−
∑N
i=1 xi(p) is increas-

ing. Therefore, if p?∈P? then 0=D′(p?)≤D′(p)=C −∑N
i=1 xi(p) for p≥p?. Similarly, if p<p? then D′(p)<0.
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