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Abstract— Distributed control and decision making increas-
ingly play a central role in economical and sustainable operation
of cyber-physical systems. Nevertheless, the full potential of the
technology has not yet been fully exploited in practice due to
communication limitations of real-world infrastructures. This
work investigates the fundamental properties of gradient meth-
ods for distributed optimization, where gradient information is
communicated at every iteration, when using limited number of
communicated bits. In particular, a general class of quantized
gradient methods are studied where the gradient direction is
approximated by a finite quantization set. Conditions on the
quantization set are provided that are necessary and sufficient
to guarantee the ability of these methods to minimize any
convex objective function with Lipschitz continuous gradient
and a nonempty, bounded set of optimizers. Moreover, a lower
bound on the cardinality of the quantization set is provided,
along with specific examples of minimal quantizations. Fur-
thermore, convergence rate results are established that connect
the fineness of the quantization and number of iterations
needed to reach a predefined solution accuracy. The results
provide a bound on the number of bits needed to achieve
the desired accuracy. Finally, an application of the theory to
resource allocation in power networks is demonstrated, and the
theoretical results are substantiated by numerical simulations.

I. INTRODUCTION

Recent advances in distributed control and optimization
techniques have enabled more economical and sustainable
operation of cyber-physical systems. However, the full po-
tential of the technology has not been fully exploited in
many application such as power networks due to inherent
communication constraints. For example, although power
networks are equipped with a natural communication in-
frastructure such as power line communications [1], it is
currently not used for distributed decision making due to
limited bandwidth/Shannon capacity. Instead, research efforts
in distributed operation of power networks usually assume
high data rates and low latency wireless communication
technologies that might be integrated into the networks
sometime in the future. Another component of cyber-physical
systems where economic communication plays a central role
are wireless sensor networks (WSN). WSNs are powered
by battery sources for communication over wireless links;
hence, are constrained in how much transmission they engage
in to prolong battery life and operation time of the sensors.
Motivated by the discussion above, the goal of this paper is to
investigate fundamental communication limits of distributed
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optimization approaches based on gradient methods and
decomposition.

Decomposition methods in optimization have been widely
investigated in wired/wireless communication [2]–[5], power
networks [6], [7], and WSNs [8], among others. These
methods are typically based on communicating gradient
information from a set of source nodes to users, which
then solve a simple, local subproblem. The procedure can
be performed using a) one-way communication where the
source nodes estimate the gradient using available informa-
tion [3], [9] or b) two-way communication where users and
sources need to coordinate to evaluate the gradient. The main
contribution of this paper is to investigate the performance
of such decomposition methods where bandwidth is limited.

Limited bandwidth in distributed optimization has al-
ready received attention in the literature [10]–[12]. For
example, [10] considers a variant of incremental gradient
methods [13] over networks where each node projects its
iterate to a grid before sending the iterate to the next node.
Similar quantization ideas are explored in [11] in the con-
text of consensus-type subgradient methods [14]. Our work
differs from the aforementioned papers in that we consider
decomposition methods where the gradient is communicated
whereas in [10], [11] it is the decision variables that are
communicated. The work in [12] studies the convergence of
standard interference functions methods for power control
in cellular wireless systems where base stations send binary
signals to the cells. Unlike [12], in this work the gradient
information is quantized and transmitted by a constrained
number of bits.

A. Contributions of This Work

We consider quantized gradient methods (QGM) where at
each iteration the gradient direction is projected to a finite
quantization set D. We begin by investigating conditions
under which the quantization set D is proper in the sense
that QGMs can minimize any convex function f : RN → R
with Lipschitz continuous gradients and non-empty, bounded
set of minimizers. We provide necessary and sufficient con-
ditions that characterize such proper quantization sets. We
then use this characterization to provide examples of proper
quantization sets D. Further, we show that if |D| ≤ N then
D can not be proper, i.e., for every such D there exists
an optimization problem which QGMs can not solve. In
addition, we show that there exists a proper quantization
with |D| = N + 1. We show that the stopping criteria
||∇f(x)|| < ε and f(x) − f? < ε can be achieved for any
ε > 0 in finite number of iterations. Moreover, we provide a
bound on the number of iterations needed to achieve these



stopping conditions; this bound depends on the fineness of
the quantization set D. Specifically, the bound on number of
iterations decreases when the quantization set becomes finer.
We also show that, when the step-sizes are non-summable
but square summable, then the iterates of QGMs converge to
the set of optimal values. We show how the theory presented
in this paper can be applied to a resource allocation problem
in electrical power grids. Finally, we numerically illustrate
the performance of the algorithm.

B. Notation

Vectors and matrices are represented by boldface lower
and upper case letters, respectively. The set of real and
natural numbers are denoted by R and N, respectively. The
set of real n vectors and n×m matrices are denoted by
Rn and Rn×m, respectively. Otherwise, we use calligraphy
letters to represent sets. We let Sn={x∈Rn

∣∣1=||x||} denote
the unit sphere. The superscript (·)T stands for transpose.
diag(A1, . . .,An) denotes the diagonal block matrix with
A1, . . .,An on the diagonal. || · || denotes the 2-norm.

II. PRELIMINARIES AND APPLICATION EXAMPLE

In this paper we consider optimization problems of the
form

minimize
x∈RN

f(x). (1)

We denote by f? and X ? the optimal value and the set
of optimizers to Problem (1), respectively. We consider the
following class of functions f :

Definition 1: Let F denote the set of convex and dif-
ferentiable functions on RN with L-Lipschitz continuous
gradients where X ? is nonempty and bounded.
For f ∈ F it is well known that the gradient method

x(t+1) = x(t)− γ(t)∇f(x(t)), (2)

converges to X ? under appropriate step-size rules [15]. When
only the gradient direction is known, recursion (2) becomes

x(t+1) = x(t)− γ(t)
∇f(x(t))

||∇f(x(t))||
. (3)

(3) converges to X ? under appropriate diminishing step-size
rules, and for fixed step-size γ(t) = γ the stopping condition
f(x(t))− f? < ε can be achieved for all ε > 0 [16].

Problems of the form (1) commonly appear as primal or
dual master problems in distributed optimization methods
such as primal or dual decomposition [4], [5]. In such
methods, the gradient information needs to be communicated
to perform the recursions (2) or (3). We now give an example
of such a distributed procedure.

A. Application Example: Distributed Power Allocation

Consider a network consisting of N resources and M
users. The generation of resource j = 1, . . . N and the usage
of user i = 1, . . . ,M are donated by rj ∈ Rj ⊆ R and qi ∈
Qi ⊆ RN , respectively. The local constraints Rj and Qj
represent generation limits and user preferences, respectively.
The generation of resource j has cost function Cj , and the
usage of user i has utility function Ui. The operation goal of

the network is to optimize the social welfare of the system
by solving the following maximization problem.

maximize
(q,r)∈RMN×N

M∑
i=1

Ui(qi)−
N∑
j=1

Cj(rj)

subject to qi ∈ Qi, for i = 1, . . . ,M

rj ∈ Rj , for j = 1, . . . , N
N∑
i=1

qi = r.

(RA)

For notational ease, we write q = (q1, . . . ,qM ), r =
(r1, . . . , rN ), Q = Q1 × . . .QM , and R = R1 × . . .RN .
The dual problem of (RA) is of the form given in (1) where
the dual function f : RN → R is given by

f(p) = maximize
(q,r)∈Q×R

L(q, r,p) = L(q(p), r(p),p). (4)

Here

L(q, r,p) =

M∑
i=1

Ui(qi)−
N∑
j=1

Cj(rj)− pT

(
r−

M∑
i=1

qi

)
,

and for all i = 1, . . . ,M and j = 1, . . . , N we have

qi(p) =argmax
qi∈Qi

Ui(qi)− pTqi, (5)

rj(pj) =argmax
rj∈Rj

− Ci(ri) + pjrj . (6)

The following result is proved in the appendix of [17].
Lemma 1: Suppose there exists µ > 0 such that Ui and Cj

are µ-strongly concave and µ-strongly convex, respectively,
for all i = 1, . . . ,M and j = 1, . . . , n and Qi and Ri are
convex and compact sets. Then, f is continuously differen-
tiable on RN and the gradient ∇f(p) = r(p)−

∑M
i=1 qi(p)

is (M + 1)/µ-Lipschitz continuous.
By Lemma 1 the update rules (2) and (3) apply here.
However, the gradient information must be broadcasted to
the users so they can solve their subproblems (5) and (6). In
many applications, the gradient ∇f(p) = r(t)−

∑M
i=1 qi(t),

i.e., the amount used of each resource at time t, can be
measured at the source. Hence, using only one-way com-
munication is feasible.

III. QUANTIZED GRADIENT DESCENT METHODS

We consider general quantized gradient methods of the
form

x(t+1) = x(t)− γ(t)d(t), (7)

with d(t) ∈ D ⊆ SN , where D is a finite set of quantized
gradient directions. Clearly, we have the following relation
between the cardinality of D and communicated bits at each
iteration of (7).

Remark 1: The set D can be coded using log2(|D|) bits.
We investigate what fundamental properties the set D needs
for the recursion (7) to minimize any f ∈ F . To formally
assert the meaning of such a proper quantization we make
the following definition.



Definition 2: A set D is a proper quantization if for every
f ∈ F and every initialization x(0) ∈ RN we can choose
d(t) ∈ D and γ(t) ∈ R+, for all t ∈ N, in the recursion (7)
such that

lim
t→∞

dist(x(t),X ?) = 0. (8)

In other words, every limit point of x(t) is in X ?.
Definition 2 is not constructive since its validation requires
testing the dynamics (7) on every function f ∈ F . In
addition, it does not provide an algorithm based on (7); it
does not provide a strategy for choosing d(t) even when D
is known to be a proper quantization. Moreover, Definition 2
gives no insight into other interesting properties of the
quantization set D. For example, it gives no information
regarding the minimal size of |D| which ensures a proper
quantization or how the structure of D affects the conver-
gence behavior of potential quantized gradient methods. All
of the points mentioned above are investigated in this paper.
We specifically provide solutions to the following questions:
A) What are equivalent constructive conditions for the set D

being proper quantization that can be used to determine
whether D is a proper quantization or to construct such
sets?

B) Given a proper quantization D, how can we construct an
algorithm from (7) such that limt→∞ dist(x(t),X ?) =
0, i.e., choose the proper d(t) ∈ D γ(t) ∈ R+?

C) What are the connections between the fineness of the
quantization, i.e., the size of |D|, to the possible conver-
gence of the algorithm?

D) What is the minimal quantization, i.e., size |D|, for which
D is a proper quantization?

In the following subsections we answer each of the
questions above, but refer to later sections for many of the
technical details.

A. θ-Covers: Solution to Question A)

We now provide conditions that are equivalent to D being
a proper quantization (Definition 2) but are constructive in
the sense that they can be used to determine if a set D is a
proper quantization or to construct such D. We then use this
condition to provide examples of proper quantization sets D.

Definition 3: We say that the set D is a θ-cover if θ > 0
and for every g ∈ SN there exists d ∈ D such that

cos(ang(g,d)) ≥ θ. (9)

We say that the θ-cover D is tight if there exists a vector
g ∈ SR such that maxd∈D cos(ang(g,d)) = θ.
The following result asserts the equivalence between Defini-
tions 2 and 3.

Theorem 1: Consider a quantization set D. D is a proper
quantization (Definition 2) if and only if there exists θ > 0
such that D is a θ-cover for some θ > 0 (Definition 3).

Proof: Let us start by showing via a contradiction that
D being a proper quantization implies that there exists θ > 0
such that D is θ-cover. Suppose there does not exists θ > 0
for which D is a θ-cover. Then, since D is finite, there exists

a ∈ SN such that cos(ang(a,d)) ≤ 0 for all d ∈ D. In
particular, we have for all d ∈ D that

〈a,d〉 = ‖a‖‖d‖ cos(ang(a,d)) ≤ 0. (10)

By choosing x(0) = a, using Recursion (7) and Cauchy-
Schwarz inequality we conclude that for all t ∈ N

||x(t)|| ≥ 〈a,x(t)〉 =〈a,a〉 −
t−1∑
i=0

γ(t)〈a,d(t)〉 ≥ 1,

where the inequality follows from that ||a|| = 1 and that for
all d(t) ∈ D we have 〈a,d〉 ≤ 0. If we choose f(x) = ||x||
then f ∈ F and f has the unique optimizer x? = 0, but

dist(x(t),X ?) = ||x(t)|| ≥ 1, (11)

for all t ∈ N. Since (11) holds for all d(t) ∈ D and γ(t) ∈
R+, we can conclude that D is not a proper quantization.

The fact that D being a θ-cover implies that D is a proper
quantization, follows from Theorem 6 in Section IV-B, where
we show that for all f ∈ F we can choose d(t) ∈ D and
γ(t) ∈ R+ such that limt→∞ dist(x(t),X ?) = 0.

We now provide some examples of θ-covers.
Example 1 (Minimal Example: |D1| = N + 1): Set

D1 = {e1, . . . , eN ,−1/
√
N}, (12)

where ei is the i-th element of the normal basis and 1 is
N dimensional vector with 1 in every component. Clearly,
|D| = N + 1 and therefore D can be coded using only
log2(N + 1) bits. We show in Section III-C that this is a
minimal quantization, since in general if |D| ≤ N , then
D cannot be a proper quantization. We show in Lemma 4
in [17], that D1 is a θ-cover with

θ =
1√

N2 + 2
√
N(N − 1)

. (13)

Example 2 (Example in R2: |D2| = n): For every n ∈ N
set

Dn =

{[
cos(2πk/n)
sin(2πk/n)

]
∈ R2

∣∣∣∣k = 0, 1, . . . , n− 1

}
.

Clearly, if n ≥ 3, Dn is a θ-cover with θ = cos(π/n).
Example 3 (± Normal Basis: |D3| = 2N ): Let D3 =

{e1,−e1, e2,−e2, . . . , eN ,−eN}. Clearly, |D3| = 2N and
hence log2(2N) bits are needed to broadcast the quantized
gradient direction. Let us now show that D3 is θ-cover
with θ = 1/

√
N . Take x ∈ SN , then if we choose d =

sign(xi)ei where i = argmaxi=1,...,N |xi| then it holds that
cos(ang(x,d)) = 〈x,d〉 = xi · sign(xi) = |xi| ≥ 1/

√
N.

Example 4 (Signs of the gradients: |D4|=2N , θ=1/
√
N ):

Let D = {(1/
√
N)(e1, e2, . . . , eN )

∣∣ei ∈ {−1, 1}}. Here,
each d ∈ D represents one orthant of RN . Therefore, this
choice is well suited when the sources cannot cooperate
and each source updates its price based on local estimates
of their part of the gradient, i.e., d(t) = sign(∇f(p(t))).
It can be checked that |D| = 2N hence log2(2N ) = N bits
are needed to broadcast the quantized gradient direction. To



show that D4 is θ-cover with θ = 1/
√
N , take any x ∈ SN .

Then it holds for d = (1/
√
N)sign(x) that

cos(ang(x,d)) = 〈x,d〉 =
1√
N

N∑
i=1

xi · sign(xi)

≥ 1√
N

N∑
i=1

x2
i =

1√
N
||x|| = 1√

N
.

B. Algorithm: Solution to Questions B) and C)

Unlike Definition 2, Definition 3 actually provides us with
tools to construct algorithms for solving Problem (1) when
D is a proper quantization. In particular, for x(t) ∈ RN we
can quantize the gradient ∇f(x(t)) with a d(t) ∈ D such
that cos(ang(∇f(x(t)),d(t))) ≥ θ, as seen in Algorithm 1.
We study the convergence of Algorithm 1 in Section IV. In
particular, we provide a bound on the number of iterations
needed to achieve a specified accuracy that decreases as θ
becomes closer to 1. Moreover, we show how to choose
the step-sizes so that any limit point of the algorithm is an
optimizer of Problem (1).

Algorithm 1: θ-Quantized Gradient Methods (θ-QGM)

Initialization: Choose x(0)∈RN ;
for t = 0, 1 . . . do

Quantized Gradient: Choose d(t) ∈ D such that

cos(ang(∇f(x(t)),d(t))) ≥ θ

Gradient Step: x(t+ 1) = x(t)− γ(t)d(t)

C. Minimal Quantization: Solution to Question D)

In Example 1 we provided a proper quantization D where
|D| = N + 1. We now show that N + 1 is a minimal proper
quantization in the sense that there does not exist a proper
quantization set D with cardinality less than N + 1.

Theorem 2: Suppose that |D| ≤ N . Then D is not a
proper quantization (Defintion 2).

Proof: First consider the case where either |D| < N
or |D| = N and the elements of D are linearly dependent.
Then Span(D) is a proper subspace of RN , so there exists a
normal a ∈ SN such that cos(ang(a,d)) = 〈a,d〉 ≤ 0 for
all d ∈ Span(D). Since D ⊆ Span(D), D is not a θ-cover
for any θ > 0 and the result follows from Theorem 1.

Let us next consider the other case, where |D| = N and
the vectors of D are linearly independent, i.e., Span(D) =
RN . Define D ∈ RN×N such that for i = 1, . . . , N row
i in D is the i-th elemnt of D, where the elements have
some arbitrary order. Then D is invertible and we can choose
a = D−1(−1) where 1 ∈ RN is a vector of all ones. Then
we have for i = 1, . . . , N that 〈di,a〉 = −diD−11 = −1.
Hence, as in the previous case, we get that 〈a,d〉 ≤ 0 for all
d ∈ D implying that D can not be a θ-cover for any θ > 0,
and the result follows from Theorem 1.

We now study the convergence of the Algorithm 1.

IV. CONVERGENCE

We first investigate the convergence Algorithm 1 when the
step-sizes are fixed, i.e., γ(t) = γ, in subsection IV-A. Then
in subsection IV-B we consider diminishing step-size.

A. Constant Step Size

For constant step-size we consider the following two types
of stopping criteria:

Type-1: ||∇f(x)|| < ε, (14)
Type-2: f(x(t))− f? < ε. (15)

We note that when performing primal or dual decomposition
usually only the gradient of f is available but the objective
function is distributed between different users, hence (14)
tends to be a more practical stopping condition.

1) Stopping Condition of Type-1: We start by showing
that the Type-1 stopping criterion can be achieved for any
ε > 0 in finitely many iterations. Further, we provide a bound
on number of iterations that depends on θ outlined next.

Theorem 3: For ε > 0 we define the set

X (ε) = {x ∈ RN
∣∣||∇f(x)|| ≤ ε}. (16)

If f ∈ F , D is a θ-cover, and the sequence (x(t))t∈N is
generated using Algorithm 1, then the following holds:
a) For any ε > 0, if γ ∈ (0, 2θε/L) then there exists T ∈ N

such that x(T ) ∈ X (ε), with T bounded by

T ≤
⌈

2(f(x(0))− f?)
γ(2θε− Lγ)

⌉
. (17)

The upper bound (17) is minimized with the optimal step
size γ? = θε/L.

b) For any step size γ > 0 and scalar κ > 0, if we choose

ε(κ, γ) = κ+ γL/(2θ) (18)

then there exists T ∈ N such that x(T ) ∈ X (ε(κ, γ)),
with T bounded by

T ≤
⌈
f(x(0))− f?

θγκ

⌉
. (19)

c) (Lower Bound on T ) For any step-size γ > 0 and ε > 0
if x(T ) ∈ X (ε) then

||∇f(x(0))|| − ε
γL

≤ T (20)

Proof: a) Let ε > 0 be given and choose any γ ∈
(0, 2θε/L). From Lemma 2 below we have for all x(t) ∈
RN \ X (ε) that

f(x(t+ 1)) ≤ f(x(t))− δ(ε, γ, θ), (21)

where δ(ε, γ, θ)>0 is defined in (27). By recursively us-
ing (21), it follows that if x(t)∈RN \ X (ε) for all t<s then

f(x(s)) ≤ f(x(0))− s δ(ε, γ, θ). (22)

Therefore, there must exist T ≤ d(f(x(0))− f?)/δ(ε, γ, θ)e
such that x(T ) ∈ X (ε); otherwise, we can use (21) with s =
d(f(x(0))− f?)/δ(ε, γ, θ)e+ 1 to get the contradiction that
f(x(s)) < f?, which cannot be true since f? is the optimal



solution to (1). By rearranging d(f(x(0))−D?)/δ(ε, γ, θ)e,
we get (17). The optimal step-size γ? = θε/L comes by
simply maximizing the denominator in (17).

b) This result can be obtained by using similar arguments
as were used to prove part a). The only difference is that
now we have an explicit form for ε when using (21), which
results in

δ(ε, γ, θ) = δ

(
κ+

γL

2θ
, γ, θ

)
= θγκ. (23)

c) Using that the gradient ∇f is L-Lipschitz continuous
and the triangle inequality, we have for all t ∈ N that

||∇f(x(t))|| − Lγ ≤ ||∇f(x(t+1))||. (24)

Recursively applying (24) gives

||∇f(x(0))|| − Lγt ≤ ||∇f(x(t))||. (25)

Hence, from (25), ||∇f(p(t))|| ≤ ε can only hold when
t ≥ (||∇f(p(0))|| − ε)/(Lγ).

Lemma 2: Let f : RN → R be a convex and continuously
differentiable function with L-continuous gradient. Suppose
ε > 0, γ ∈ (0, 2θε/L), θ ∈ (0, 1], x ∈ RN , and d ∈ SN
where cos(ang(∇f(x),d))≥θ and ||∇f(x)||>ε. Then

f(x− γd) ≤ f(x)− δ(ε, γ, θ), (26)

where

δ(ε, γ, θ) = −
(
L

2
γ − θε

)
γ > 0. (27)

Proof: See Lemma 2 in the extended version [17].
Theorem 3-a) proves that if D is a θ-cover then the Type-

1 stopping condition, (eq. (14)) can be achieved with ε-
accuracy in finitely many iterations, for all ε > 0. Moreover,
it gives a bound on the number of iterations needed to
achieve such ε-accuracy depending on θ, where the bound
decreases as θ approaches 1. Theorem 3-b) demonstrates
what ε-accuracy can be achieved for a given step-size. The
parameter κ captures a trade off between the ε-accuracy and
the number of iterations. In fact, by optimizing over both γ
and κ in Theorem 3-b), we find an optimal bound on the
accuracy ε that can be guaranteed in Tmax iterations. This
idea is formalized in the following Theorem.

Theorem 4: Suppose an upper bound Tmax ∈ N on
number of iterations is given. Then the minimal bound
ε(κ, γ) achieved from (18) in Tmax iterations is

ε? =
L

θ

√
2(f(x(0))−f?)

LTmax
, (28)

where the corresponding optimal γ and κ are

γ?=

√
2(f(x(0))−f?)

LTmax
and κ?=

√
L(f(x(0))−f?)
θ
√

2Tmax
. (29)

In other words, equations (28) and (29) give an optimal
solution to the following optimization problem:

minimize
κ,γ

ε(κ, γ) = κ+ (L/(2θ))γ

subject to
f(x(0))− f?

θγκ
≤ Tmax,

γ, κ > 0.

(30)

Proof: See Theorem 4 in the extended version [17].
We next demonstrate how the convergence results translate

to Type-2 stopping conditions (eq. (15)).
2) Stopping Condition of Type-2: We have the following

result.
Theorem 5: Suppose f ∈ F , D is a θ-cover, and the

iterates x(t) come from Algorithm 1, then following holds:
a) For any ε > 0, γ ∈ (0, 2θε/L) and T ∈ N such that

x(T ) ∈ X (ε) it holds, for all t ≥ T , that

f(x(t)) ≤ F (ε) +

(
ε+

L

2
γ

)
γ, (31)

where F : R+ → R ∪ {∞} is given by

F (κ) = sup{f(x)|x ∈ X (κ)}. (32)

There exists κ̄ > 0 such that F (κ) < ∞ for all κ < κ̄
and limκ→0+ F (κ) = f?.

b) If f is µ-strongly convex then we have

F (ε) ≤ f? + ε2/(2µ). (33)
Proof: See Theorem 5 in the extended version [17].

Theorem 5 yields the following immediate corollary.
Corollary 1: For any ε > 0 there exists step-size γ > 0

and T ∈ N such that f(x(T )) − f? < ε. Moreover, if f
is µ-strongly convex and ε1, γ > 0 are chosen such that
γ ∈ (0, 2θε1) and ε1/(2µ) + (ε1 + Lγ/2)γ < ε then

T ≤
⌈

2(f(x(0))− f?)
γ(2θε1 − Lγ)

⌉
. (34)

These results prove that the Type-2 stopping condition
(eq. (15)) can be achieved in finitely many iterations. More-
over, when f is strongly concave the results provide a bound
on the number of iterations..

B. Diminishing Step Size

We now consider the diminishing step-size case.
Theorem 6: Suppose that f ∈ F , X ? is bounded, D is

a θ-cover, and the sequence (x(t))t∈N is generated using
Algorithm 1. If the step-size γ(t) is non-summable and
square summable, i.e.,

N∑
t=0

γ(t) =∞ and
N∑
t=0

γ(t)2 <∞, (35)

then limt→∞ dist(x(t),X ?) = 0.
Proof: See Theorem 6 in the extended version [17].

Theorem 6 shows that when D is a θ-cover then there
exists a step-size rule such that every limit point of the
quantized gradient methods is an optimal solution to (1). We
next numerically illustrate the quantized gradient methods.

V. SIMULATION RESULTS

We illustrate the performance of the quantized gradi-
ent methods on an instance of (RA) from Section II-
A with M=4 users and N=2 resources. For i=1, 2, 3, 4
and j = 1, 2, we set Cj(rj) = −cjr2j , Ui(qi) =
ai1 log(0.1 + qi1) + ai2 log(0.1 + qi2), Rj = [0, 10] and
Qi = {(x, y) ∈ R2|x, y ≥ 0, x + y ≤ 3}. Clearly,
Cj and Ui are strongly concave on their domains with
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Fig. 1: Gradient and objective function value over the course of the algorithm.

concavity parameters cj and µi = min{ai1, ai2}/3.12 =
min{ai1, ai2}/9.61, respectively. By Lemma 1, the dual
gradient is L-Lipschitz continuous with L = 5/µ, where
µ = min{c1, c2, µ1, . . . , µ4}. We choose c1 = c2 = 1, and
a1,a2,a3,a4 = (50, 14), (20, 11), (40, 12), (35, 10).

Figure 1 depicts the results when the step-size is γ = 0.1
and the initialization is x(0) = (0, 0) (recall that x is the
dual variable here). We use the quantization set D from
Example 2, which corresponds to the case where 2, 3, and
4 bits are communicated per iteration, i.e., |D| = 4, 8, 16,
see Remark 1. The norm of the gradient ||∇f || reaches the
accuracy ε = 0.1 in roughly 140, 180, and 240 using 560,
540, 480 bits when 2, 3, and 4 bits are communicated per it-
eration, respectively. We compare the results to recursions (2)
and (3) where no quantization is done, i.e., infinite bandwidth
is used. Figure 1a shows that by using 4 bits per iteration,
the results achieved by QGM are almost as good as when the
full gradient direction is communicated in (3). However, the
QGMs do not perform as well as (2); this is to be expected,
since in (2) the full direction and magnitude of the gradient is
known. Our results illustrate that we can dramatically reduce
the number of bits communicated without sacrificing much
in performance.

VI. CONCLUSIONS AND FUTURE WORK

In this paper quantized gradient methods for distributed
optimization were investigated. Necessary and sufficient con-
ditions were provided that ensure that the quantized methods
can minimize any function with Lipschitz continuous gradi-
ent. These conditions were used to provide a lower bound
on the number of bits needed to quantizes the gradients.
Moreover, the results demonstrated how the number of
iterations needed to achieve the desired solution accuracy
are related to the fineness of the quantization. These results
can be used to provide a bound on the number of bits needed
to solve an optimization problem up to a desired accuracy.
Future research directions will consider problems with non-
differentiable objective functions and constraints. Moreover,
for given θ it is desirable to find the optimal quantization, i.e.,
the one that can be coded using the fewest number of bits.
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